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The Reynolds theory of a one-dimensional hydrodynamic problem of lubrication, when the liquid is
viscoelastic with an arbitrary relaxation core, is generalized. On the basis of a qualitative and nu-
merical analysis, it is shown that the effect of relaxation leads to expansion of the pressure distribu-
tion and to a decrease in the carrying capacity of a lubricating layer.

In friction units with lubrication, situations can occur where a particle of a lubricant passes through
the region of high gradients for a time comparable with a time of relaxation to local thermodynamic equilib-
rium. In this case, in calculations one must take into account the effects of time nonlocality (or, in other
words, inheritance). The fact that viscoelastic properties of fluids have been studied well only under condi-
tions of small departures from equilibrium hinders the solution of this problem. For friction units, when de-
partures from equilibrium are large, it is not completely clear in which way retardation is to be taken into
account in the rheological law. Generally speaking, the dependence of stresses on deformations in the form
of a complex nonlinear functional is possible.

In the present work, a one-dimensional hydrodynamic problem for a viscoelastic incompressible lubri-
cant in the absence of slip is considered. The generalization of the Reynolds theory for the simplest rheologi-
cal law which allows for retardation and dependence of viscosity on pressure is constructed.

We assume that there is a steady-state isothermal flow in the region h1(x) ≤ y ≤ h2(x), where y = hi(x)
are the equations of the surfaces of rigid bodies which are in contact with the fluid. This problem was studied
in detail for the Newtonian geometry [1−3]. Therefore, we take for granted a number of relations which were
obtained previously for this problem [1−3] and are not related to the rheological law.

We take the continuity equation and the momentum equations in the form

d
dx

   ∫ 

h1(x)

h2(x)

  udy = 0 ,
(1)

0 = − ∂xp + ∂xτxx + ∂yτxy , (2)

0 = − ∂yp + ∂xτyx + ∂yτyy . (3)

Here u is the x-component of the flow velocity. We adopt the following rheological law:

τxy (t) = 2µ (p (t)) ∫ K (t − t0) exy (t0) dt0 , (4)
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where µ is a positive function of pressure.
In (4), integration over time is performed in a particle of the medium (but not at the point of space!).

The relaxation core is assumed to be independent of pressure. It is convenient to normalize the core by the
condition

∫ K (t) dt = 1 . (5)

Then the quantity µ can be interpreted as ordinary shear viscosity observed in slow flows of this fluid.
Retaining, in a standard manner [1−3], only the main terms in relations (2)−(4), we come to the equa-

tions

0 = − ∂xp + ∂yτxy , (6)

0 = − ∂yp , (7)

τxy (t) = 2µ (p (t)) ∫ K (t − t0) ∂yu (t0) dt0 .
(8)

As in the classical approach [1−3], it follows from Eq. (7) that the pressure field depends only on the
variable x.

Let us consider the functional form of the relaxation core. It is obvious that for the causality of the
model to be provided, the condition K(t) = 0 for t < 0 must hold. Moreover, from general thermodynamic
considerations [4, 5] there follows the condition on the Fourier transform of the core:

Re KF (ω) ≥ 0 . (9)

Imposing an additional condition on the quantity K(0), we can attain the finiteness of the velocity of
propagation of shear disturbances [6, 7]:

0 < K (0) < + ∞ . (10)

In addition to conditions (5), (9), and (10), we adopt that K(t) for t ≥ 0 is a positive monotonically
decreasing function (fading memory).

In practice, one makes wide use of cores of the form

K (t) =  ∑ 
n

 Anτn
−1 exp (− t ⁄ τn) ,   t ≥ 0 , (11)

where τn > 0 is a discrete set of internal times of relaxation. The additional conditions

  ∑ 
n

 An = 1 ,   An > 0 ,   ∑ 
n

 Anτn
−1 < + ∞

are sufficient to satisfy (5), (9), and (10). The representation of (11) corresponds to the realization of the
discrete set of dissipative relaxation processes in a particle of the fluid. A more general representation which
covers the case of a continuous spectrum of dissipative internal relaxation processes has the form

K (t) =  ∫ 

τ>0

 A (τ) τ−1 exp (− t ⁄ τ) dτ ,   t ≥ 0 . (12)
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In this case, to comply with (5), (9), and (10) the following conditions are sufficient:

  ∫ 

τ>0

 A (τ) dτ = 1 ,   A (τ) > 0 ,     ∫ 
τ>0

 A (τ) τ−1 dτ < + ∞ .

Core (11) is obtained from core (12) when the function A(τ) falls into the sum of δ-functions. From
the physical studies [8] made for a number of one-component fluids it follows that the spectrum of relaxation
times often contains two discrete points τ1 and τ2 and also a continuous section 0 < τ < τ3, with τ1 > τ3 and
τ2 > τ3.

At the boundary of the flow region we adopt the ordinary no-slip conditions [1−3]:

u y=h1(x) = U ,   u y=h2(x) = U , (13)

where U is a positive quantity with the dimensions of velocity. Generally speaking, the boundary conditions
for a hereditary fluid can have the form of relaxation equations with phenomenological parameters that char-
acterize the interaction with a solid surface. However, in the present work we use only classical relations
(13).

We assume that the velocity field is decomposed into

u = U + v ,    v  << U . (14)

In the flow region we introduce the variable η, 0 ≤ η ≤ 1, by the formula

y = h1 (x) + h (x) η ,   h (x) = h2 (x) − h1 (x) .

Since the flow is steady, integration over time in relation (8) can be replaced by integration along the
streamline. In the ordinary assumptions of lubrication theory, streamlines differ negligibly from the lines η =
const. Thus, from (8), with account for (14), we obtain

τxy (x, y) = µ (p (x)) U−1 ∫ 
a

x1

K ((x − x0) U
−1) v,y (x0, y∗  (x0)) dx0 + g (x, y) . (15)

Here x = a is the left boundary of the flow region,

y∗  (x0) = h1 (x0) + (y − h1 (x)) h (x0) h (x)−1 ,

and the function g(x, y) describes the effect of the state of the fluid prior to its entry into the lubrication
region x ≥ a:

g (x, y) = µ (p (x)) U−1   ∫ 

x0<a

  K ((x − x0) U
−1) v,y (x0, y (x0)) dx0 .

We assume that in the region x < a the velocity field differs negligibly from the constant U, so that
the function g(x, y) on the right-hand side of expression (15) can be ignored. We seek the velocity profile in
the following form:

v = f (x) (h2 (x) − y) (y − h1 (x)) , (16)

which corresponds to boundary conditions (13). Hence we calculate
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v,y = f (x) (h2 (x) − h1 (x)) (1 − 2η) .

Substituting this expression into formula (15), we find the viscous stresses

τxy (x, y) = µ (p (x)) (h1 (x) + h2 (x) − 2y) (Uh (x))−1 ∫ 
a

x

K ((x − x0) U
−1) f (x0) h (x0) dx0 .

This equation, in combination with (6), allows one to obtain ordinary differential equations for pressure:

µ (p)−1 p,x = − 2 (Uh (x))−1 ∫ 
a

x

K ((x − x0) U
−1) f (x0) h (x0) dx0 . (17)

Then, substituting expressions (14) and (16) into the continuity equation (1), we derive the relation

d
dx

 (Uh + 6−1 fh3) = 0 ,

which can be integrated:

Uh + 6−1 fh3 = Q . (18)

Here the integration constant Q has the meaning of ordinary flow rate. From (17) and (18) we find the final
expression for pressure:

µ (p)−1 p,x = − 12 (Uh (x))−1 ∫ 
a

x

K ((x − x0) U
−1) (Q − Uh (x0)) h (x0)

−2 dx0 . (19)

As the boundary conditions for this equation we take the same relations as in the classical approach [1−3]:

p x=a = p0 ,   p x=b = p0 ,   p,x x=b = 0 , (20)

where b > a. At a given value of a, problem (19), (20) allows one to determine the distribution of pressure
and the parameters Q and b.

We note that by virtue of Eq. (19) the equality

p,x x=a = 0 .

always holds.
The classical problem for a Newtonian lubricant [1−3] is obtained from (19) and (20) by formal sub-

stitution of the Dirac δ-function for the relaxation core. This note and an analysis of Eq. (19) make it possi-
ble to reveal qualitative differences from the case of the Newtonian lubricant. Thus, the extrema of the
pressure field for the Newtonian lubricant coincide with zeros of the integrand in (19); for a viscoelastic
lubricant they are shifted downstream relative to these zeros. If the function h = h(x) is symmetric, i.e., h(x)
= h(−x), then the distribution of the pressure gradient p,x for the Newtonian lubricant is also symmetric; for
a viscoelastic lubricant this property does not hold. An increase of the velocity U with a constant flow rate
Q leads to enhancement of relaxation effects and an increase of the length (b − a); in contrast, a decrease of
the velocity U makes all the characteristics approach the values determined for the Newtonian lubricant.
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To obtain quantitative results, we consider a lubricant with constant viscosity for the parabolic de-
pendence

h (x) = h0 + γx2 .

We pass, in the ordinary way, to the dimensionless quantities [2]:

z = h0
−1 ⁄ 2 γ1 ⁄ 2 x ,   α = h0

−1 ⁄ 2 γ1 ⁄ 2 a ,   β = h0
−1 ⁄ 2 γ1 ⁄ 2 b ,

q = (Uh0)
−1 Q ,   P = h0

3 ⁄ 2 γ1 ⁄ 2 (12Uµ)−1 p .

Then Eq. (19) can be transformed to yield

P,z = τ0 (1 + z2)−1 ∫ 
α

z

K ((z − z0) τ0) (z0
2 − (q − 1)) (1 + z0

2)−2 dz0 , (21)

where τ0 = h0
1⁄2γ−1⁄2U−1.

We recall that one of the conditions of applicability of the developed theory (14) requires the small-
ness of the dimensionless quantity  q − 1 .

We take the simplest expression for the core:

K (t) = τ1
−1 exp (− t ⁄ τ1) ,   t ≥ 0 ,

where τ1 > 0 is the relaxation time, and we denote s = τ0
 ⁄ τ1. We can obtain a numerical solution of problem

(20), (21) at the given values of α and s. Figures 1 and 2 give the corresponding results for the distribution
of the dimensionless pressure and for values of the quantity

W = ∫ 
α

β

Pdz ,

which characterizes the carrying capacity of the lubricating layer. The values α = −0.5 and p0 = 0 were fixed,
and the value of s changed from 0.4 to 6. For all variants, the calculated value of  q − 1  did not exceed
10−1. We note the decrease of the carrying capacity with decrease in the parameter s, i.e., with increase in the
effect of relaxation.

Fig. 1. Distribution of the dimensionless pressure for α = −0.5 at differ-
ent values of the parameter s.

Fig. 2. Dimensionless carrying capacity of the lubricating layer as a
function of the parameter s.
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Thus, under certain assumptions, the strongest of which is (14), we succeeded in obtaining a simple
generalization of the Reynolds theory to the case of a viscoelastic lubricant. It is shown that relaxation effects
lead, generally speaking, to "blurring" of the pressure profile and a decrease in the carrying capacity of the
lubricating layer.

NOTATION

x and y, horizontal and vertical coordinates; t, time; h1(x) and h2(x), functions describing the shape of
rigid bodies bounding the flow region; h(x) = h2(x) − h1(x), value of the gap; u, horizontal component of the
flow velocity; p, pressure; τxx, τxy, τyx, and τyy, components of the tensor of viscous stresses; exy, component
of the tensor of deformation rates; K = K(t), relaxation core; µ, shear viscosity; KF(ω), Fourier transform of
the core; τn, n = 1, 2, ..., internal times of relaxation; An and A(τ), weighting factors characterizing the con-
tribution of internal relaxation processes; U, velocity at the boundary of the flow; v = u − U, function with
the dimensions of velocity; η, auxiliary dimensionless parameter; a and b, left and right boundaries of the
flow region; g(x, y), function characterizing the effect of the region x < a on viscous stresses; t0, auxiliary
variable of integration over time; x0 and z0, auxiliary variables of integration over the abscissa; f(x), auxiliary
function characterizing the value of velocity disturbances; Q, volumetric flow rate; p0, pressure in the envi-
ronment (e.g., atmospheric pressure); h0 and γ, parameters in the parabolic dependence h(x); z, α, and β,
dimensionless values of the coordinate; q, dimensionless flow rate; P, dimensionless pressure; τ0, auxiliary
constant with the dimensions of time; s, auxiliary dimensionless quantity; W, dimensionless carrying capacity
of the lubricating layer.
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